2.1937   ODE No. 1937

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

{x(t)=x(t)y(t)2+x(t)+y(t),y(t)=x(t)2y(t)x(t)y(t),z(t)=y(t)2x(t)2} Mathematica : cpu = 0.757668 (sec), leaf count = 0 , could not solve

DSolve[{Derivative[1][x][t] == x[t] + y[t] - x[t]*y[t]^2, Derivative[1][y][t] == -x[t] - y[t] + x[t]^2*y[t], Derivative[1][z][t] == -x[t]^2 + y[t]^2}, {x[t], y[t], z[t]}, t]

Maple : cpu = 1.039 (sec), leaf count = 242

{[{x(t)=0},{y(t)=0},{z(t)=c1}],[{x(t)=ODESolStruc(_a,[{4_a5+2_a2_b(_a)(dd_a_b(_a))3_a32_a_b(_a)2_a+(4_a4+4_a2+1)_b(_a)+(4_a24_a_b(_a)+1)(_a3+_a_b(_a))22_a2=0},{_a=x(t),_b(_a)=ddtx(t)},{t=c2+1_b(_a)d_a,x(t)=_a}])},{y(t)=(d2dt2x(t))x(t)+2(x(t)3+ddtx(t)2x(t)2)(ddtx(t)+x(t))x(t)3ddtx(t)+x(t)},{z(t)=c1+x(t)52(ddtx(t))x(t)2+2x(t)3+d2dt2x(t)x(t)3ddtx(t)+x(t)dt}]}