\[ y(x) y'(x)-x e^{\frac {x}{y(x)}}=0 \] ✓ Mathematica : cpu = 0.261051 (sec), leaf count = 41
\[\text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]}{K[1]^2-e^{\frac {1}{K[1]}}}dK[1]=-\log (x)+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.053 (sec), leaf count = 31
\[\left \{y \left (x \right ) = x \RootOf \left (c_{1}-\left (\int _{}^{\textit {\_Z}}\frac {\textit {\_a}}{-\textit {\_a}^{2}+{\mathrm e}^{\frac {1}{\textit {\_a}}}}d \textit {\_a} \right )+\ln \left (x \right )\right )\right \}\]