\[ a y(x)^2-b+y'(x)=0 \] ✓ Mathematica : cpu = 0.0867575 (sec), leaf count = 43
\[\left \{\left \{y(x)\to \frac {\sqrt {b} \tanh \left (\sqrt {a} \sqrt {b} x+\sqrt {a} \sqrt {b} c_1\right )}{\sqrt {a}}\right \}\right \}\] ✓ Maple : cpu = 0.039 (sec), leaf count = 23
\[\left \{y \left (x \right ) = \frac {\sqrt {a b}\, \tanh \left (\sqrt {a b}\, \left (c_{1}+x \right )\right )}{a}\right \}\]
\begin {align*} y^{\prime }+ay^{2}-b & =0\\ \frac {dy}{dx} & =b-ay^{2} \end {align*}
Separable,\begin {align*} \frac {dy}{b-ay^{2}} & =dx\\ \int \frac {dy}{b-ay^{2}} & =\int dx \end {align*}
But \[ \int \frac {dy}{b-ay^{2}}=\frac {1}{\sqrt {ab}}\tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) \] Hence\begin {align*} \frac {1}{\sqrt {ab}}\tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) & =x+C\\ \tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) & =\sqrt {ab}\left ( x+C\right ) \\ \sqrt {\frac {a}{b}}y & =\tanh \left ( \sqrt {ab}\left ( x+C\right ) \right ) \\ y & =\sqrt {\frac {b}{a}}\tanh \left ( \sqrt {ab}\left ( x+C\right ) \right ) \end {align*}