\[ (a+x (y(x)+x)) y'(x)-b-y(x) (y(x)+x)=0 \] ✓ Mathematica : cpu = 0.398748 (sec), leaf count = 192
\[\left \{\left \{y(x)\to -\frac {a+x^2}{x}+\frac {1}{x \left (-\frac {a}{-a^2-a x^2-b x^2}-\frac {x}{\left (a^2+a x^2+b x^2\right )^{3/2} \sqrt {-\frac {1}{(a+b) \left (a^2+a x^2+b x^2\right )}+c_1}}\right )}\right \},\left \{y(x)\to -\frac {a+x^2}{x}+\frac {1}{x \left (-\frac {a}{-a^2-a x^2-b x^2}+\frac {x}{\left (a^2+a x^2+b x^2\right )^{3/2} \sqrt {-\frac {1}{(a+b) \left (a^2+a x^2+b x^2\right )}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.079 (sec), leaf count = 93
\[\left \{y \left (x \right ) = \frac {-a b x -c_{1} x +\sqrt {c_{1} \left (a +b \right ) \left (a \,x^{2}+b \,x^{2}+a^{2}-c_{1}\right )}}{-a^{2}+c_{1}}, y \left (x \right ) = \frac {a b x +c_{1} x +\sqrt {c_{1} \left (a +b \right ) \left (a \,x^{2}+b \,x^{2}+a^{2}-c_{1}\right )}}{a^{2}-c_{1}}\right \}\]