\[ x (2 y(x)-x-1) y'(x)+(-y(x)+2 x-1) y(x)=0 \] ✓ Mathematica : cpu = 14.3797 (sec), leaf count = 484
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{2} x}{\sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}-\frac {\sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{3 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{6 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1{}^2 x^2+\sqrt {\left (27 c_1{}^2 x^2+27 c_1{}^2 x\right ){}^2-108 c_1{}^3 x^3}+27 c_1{}^2 x}}{6 \sqrt [3]{2} c_1}-\frac {c_1 x+c_1}{c_1}\right \}\right \}\] ✓ Maple : cpu = 0.109 (sec), leaf count = 391
\[\left \{y \left (x \right ) = \frac {-\frac {3 c_{1} \left (\left (1+i \sqrt {3}\right ) 5^{\frac {2}{3}} x +\frac {80 \left (-20 \left (x -\frac {\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}}{20}+1\right ) c_{1}^{2} x \right )^{\frac {1}{3}} \left (x +1\right )}{3}\right )}{80}+\frac {3 \left (i \sqrt {3}-1\right ) \left (\left (-20 x +\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}-20\right ) c_{1}^{2} x \right )^{\frac {2}{3}} 5^{\frac {1}{3}}}{80}}{\left (-20 \left (x -\frac {\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}}{20}+1\right ) c_{1}^{2} x \right )^{\frac {1}{3}} c_{1}}, y \left (x \right ) = -\frac {3 \left (-c_{1} \left (\left (i \sqrt {3}-1\right ) 5^{\frac {2}{3}} x -\frac {80 \left (-20 \left (x -\frac {\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}}{20}+1\right ) c_{1}^{2} x \right )^{\frac {1}{3}} \left (x +1\right )}{3}\right )+\left (1+i \sqrt {3}\right ) \left (\left (-20 x +\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}-20\right ) c_{1}^{2} x \right )^{\frac {2}{3}} 5^{\frac {1}{3}}\right )}{80 \left (-20 \left (x -\frac {\sqrt {5}\, \sqrt {\frac {80 c_{1} \left (x +1\right )^{2}-x}{c_{1}}}}{20}+1\right ) c_{1}^{2} x \right )^{\frac {1}{3}} c_{1}}, y \left (x \right ) = \frac {3 \,5^{\frac {2}{3}} x}{40 \left (\left (-20 x +\sqrt {5}\, \sqrt {\frac {80 c_{1} x^{2}+160 c_{1} x -x +80 c_{1}}{c_{1}}}-20\right ) c_{1}^{2} x \right )^{\frac {1}{3}}}-x +\frac {3 \,5^{\frac {1}{3}} \left (\left (-20 x +\sqrt {5}\, \sqrt {\frac {80 c_{1} x^{2}+160 c_{1} x -x +80 c_{1}}{c_{1}}}-20\right ) c_{1}^{2} x \right )^{\frac {1}{3}}}{40 c_{1}}-1\right \}\]