\[ y'(x) \left (a x y(x)+b x^n\right )+\alpha y(x)^3+\beta y(x)^2=0 \] ✓ Mathematica : cpu = 5.65868 (sec), leaf count = 115
\[\text {Solve}\left [\frac {(a (-n)+a+\alpha y(x)) y(x)^{\frac {a-a n}{\beta }-1} (\alpha y(x)+\beta )^{\frac {a (n-1)}{\beta }}}{a^2 (n-1)^2 (a (n-1)+\beta )}+\frac {x^{1-n} \exp \left (-\frac {a (n-1) (\log (y(x))-\log (\alpha y(x)+\beta ))}{\beta }\right )}{a b (1-n) (n-1)}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.255 (sec), leaf count = 202
\[\left \{y \left (x \right ) = \frac {\beta }{\beta \RootOf \left (c_{1} a^{2} b \,n^{2}-a^{2} \beta n \,\textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }} x^{-n +1}-2 c_{1} a^{2} b n +c_{1} a b \beta n +a^{2} \beta \,\textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }} x^{-n +1}+a \alpha b n \,\textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }}-a b \beta n \,\textit {\_Z}^{\frac {a n -a +\beta }{\beta }}-a \,\beta ^{2} \textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }} x^{-n +1}+c_{1} a^{2} b -c_{1} a b \beta -a \alpha b \,\textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }}+a b \beta \,\textit {\_Z}^{\frac {a n -a +\beta }{\beta }}+\alpha b \beta \,\textit {\_Z}^{\frac {\left (n -1\right ) a}{\beta }}\right )-\alpha }\right \}\]