\[ x \left (x^4+x y(x)-1\right ) y'(x)-y(x) \left (-x^4+x y(x)-1\right )=0 \] ✓ Mathematica : cpu = 0.537836 (sec), leaf count = 39
\[\text {Solve}\left [2 x^2+\frac {y(x)}{x}+\frac {x \left (-2 \log \left (\frac {1}{1-x y(x)}\right )-2+c_1\right )}{y(x)}=0,y(x)\right ]\] ✓ Maple : cpu = 0.119 (sec), leaf count = 98
\[\left \{y \left (x \right ) = \frac {\left (-c_{1}+{\mathrm e}^{\RootOf \left (-2 c_{1} x^{4} {\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} \,x^{4} {\mathrm e}^{2 \textit {\_Z}}+2 x^{4} {\mathrm e}^{2 \textit {\_Z}}+c_{1}^{2}-2 c_{1} {\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{2 \textit {\_Z}}\right )}\right ) {\mathrm e}^{-\RootOf \left (-2 c_{1} x^{4} {\mathrm e}^{\textit {\_Z}}-2 \textit {\_Z} \,x^{4} {\mathrm e}^{2 \textit {\_Z}}+2 x^{4} {\mathrm e}^{2 \textit {\_Z}}+c_{1}^{2}-2 c_{1} {\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{2 \textit {\_Z}}\right )}}{x}\right \}\]