\[ \left (y(x)^2+2 y(x)+x\right ) y'(x)+y(x)^2 (y(x)+x)^2+y(x) (y(x)+1)=0 \] ✓ Mathematica : cpu = 0.643367 (sec), leaf count = 107
\[\left \{\left \{y(x)\to \frac {-x^2-\sqrt {\left (x^2-c_1 x-1\right ){}^2+4 (x-c_1)}+c_1 x+1}{2 (x-c_1)}\right \},\left \{y(x)\to \frac {-x^2+\sqrt {\left (x^2-c_1 x-1\right ){}^2+4 (x-c_1)}+c_1 x+1}{2 (x-c_1)}\right \}\right \}\] ✓ Maple : cpu = 0.161 (sec), leaf count = 116
\[\left \{y \left (x \right ) = \frac {-c_{1} x +2 x^{2}+\sqrt {-4 c_{1} x^{3}+4 x^{4}+\left (c_{1}^{2}-8\right ) x^{2}-8 c_{1}+\left (4 c_{1}+16\right ) x +4}-2}{2 c_{1}-4 x}, y \left (x \right ) = \frac {c_{1} x -2 x^{2}+\sqrt {-4 c_{1} x^{3}+4 x^{4}+\left (c_{1}^{2}-8\right ) x^{2}-8 c_{1}+\left (4 c_{1}+16\right ) x +4}+2}{-2 c_{1}+4 x}\right \}\]