\[ 3 \left (y(x)^2-x^2\right ) y'(x)+2 y(x)^3-6 x (x+1) y(x)-3 e^x=0 \] ✓ Mathematica : cpu = 0.390417 (sec), leaf count = 477
\[\left \{\left \{y(x)\to -\frac {e^{-2 x} \sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}{3 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} e^{2 x} x^2}{\sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) e^{-2 x} \sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}{6 \sqrt [3]{2}}+\frac {3 \left (1+i \sqrt {3}\right ) e^{2 x} x^2}{2^{2/3} \sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) e^{-2 x} \sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}{6 \sqrt [3]{2}}+\frac {3 \left (1-i \sqrt {3}\right ) e^{2 x} x^2}{2^{2/3} \sqrt [3]{\sqrt {-2916 e^{12 x} x^6+\left (-27 e^{7 x}+27 c_1 e^{4 x}\right ){}^2}-27 e^{7 x}+27 c_1 e^{4 x}}}\right \}\right \}\] ✓ Maple : cpu = 0.079 (sec), leaf count = 407
\[\left \{y \left (x \right ) = \frac {\left (4 x^{2} {\mathrm e}^{4 x}+\left (\left (-4 c_{1}+4 \,{\mathrm e}^{3 x}+4 \sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {2}{3}}\right ) {\mathrm e}^{-2 x}}{2 \left (-4 \left (c_{1}-{\mathrm e}^{3 x}-\sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {1}{3}}}, y \left (x \right ) = \frac {\left (-4 \left (1+i \sqrt {3}\right ) x^{2} {\mathrm e}^{4 x}+\left (i \sqrt {3}-1\right ) \left (\left (-4 c_{1}+4 \,{\mathrm e}^{3 x}+4 \sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {2}{3}}\right ) {\mathrm e}^{-2 x}}{4 \left (-4 \left (c_{1}-{\mathrm e}^{3 x}-\sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {1}{3}}}, y \left (x \right ) = -\frac {\left (-4 \left (i \sqrt {3}-1\right ) x^{2} {\mathrm e}^{4 x}+\left (1+i \sqrt {3}\right ) \left (\left (-4 c_{1}+4 \,{\mathrm e}^{3 x}+4 \sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {2}{3}}\right ) {\mathrm e}^{-2 x}}{4 \left (-4 \left (c_{1}-{\mathrm e}^{3 x}-\sqrt {-4 x^{6} {\mathrm e}^{4 x}+c_{1}^{2}-2 c_{1} {\mathrm e}^{3 x}+{\mathrm e}^{6 x}}\right ) {\mathrm e}^{4 x}\right )^{\frac {1}{3}}}\right \}\]