\[ -2 x^3+\left (2 y(x)^3+y(x)\right ) y'(x)-x=0 \] ✓ Mathematica : cpu = 0.117654 (sec), leaf count = 151
\[\left \{\left \{y(x)\to -\frac {\sqrt {-1-\sqrt {4 x^4+4 x^2+1+8 c_1}}}{\sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {-1-\sqrt {4 x^4+4 x^2+1+8 c_1}}}{\sqrt {2}}\right \},\left \{y(x)\to -\frac {\sqrt {-1+\sqrt {4 x^4+4 x^2+1+8 c_1}}}{\sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {-1+\sqrt {4 x^4+4 x^2+1+8 c_1}}}{\sqrt {2}}\right \}\right \}\] ✓ Maple : cpu = 0.043 (sec), leaf count = 113
\[\left \{y \left (x \right ) = -\frac {\sqrt {-2-2 \sqrt {4 x^{4}+4 x^{2}+8 c_{1}+1}}}{2}, y \left (x \right ) = \frac {\sqrt {-2-2 \sqrt {4 x^{4}+4 x^{2}+8 c_{1}+1}}}{2}, y \left (x \right ) = -\frac {\sqrt {-2+2 \sqrt {4 x^{4}+4 x^{2}+8 c_{1}+1}}}{2}, y \left (x \right ) = \frac {\sqrt {-2+2 \sqrt {4 x^{4}+4 x^{2}+8 c_{1}+1}}}{2}\right \}\]