\[ \left (2 x^3 y(x)^3-x\right ) y'(x)+2 x^3 y(x)^3-y(x)=0 \] ✓ Mathematica : cpu = 0.134385 (sec), leaf count = 723
\[\left \{\left \{y(x)\to -\frac {2 x^3-c_1 x^2}{6 x^2}+\frac {\sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}{6 x^2}+\frac {\left (2 x^3-c_1 x^2\right ){}^2}{6 x^2 \sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}\right \},\left \{y(x)\to -\frac {2 x^3-c_1 x^2}{6 x^2}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}{12 x^2}-\frac {\left (1+i \sqrt {3}\right ) \left (2 x^3-c_1 x^2\right ){}^2}{12 x^2 \sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}\right \},\left \{y(x)\to -\frac {2 x^3-c_1 x^2}{6 x^2}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}{12 x^2}-\frac {\left (1-i \sqrt {3}\right ) \left (2 x^3-c_1 x^2\right ){}^2}{12 x^2 \sqrt [3]{-8 x^9+12 c_1 x^8-6 c_1{}^2 x^7+c_1{}^3 x^6-27 x^4+3 \sqrt {3} \sqrt {16 x^{13}-24 c_1 x^{12}+12 c_1{}^2 x^{11}-2 c_1{}^3 x^{10}+27 x^8}}}\right \}\right \}\] ✓ Maple : cpu = 0.128 (sec), leaf count = 815
\[\left \{y \left (x \right ) = \frac {-c_{1}^{2} x^{2}+4 c_{1} x^{3}-4 x^{4}+\left (-4 x^{2}+2 c_{1} x \right ) \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}}+\left (-i c_{1}^{2} x^{2}+4 i c_{1} x^{3}-4 i x^{4}+i \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {2}{3}}\right ) \sqrt {3}-\left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {2}{3}}}{12 \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}} x}, y \left (x \right ) = -\frac {c_{1}^{2} x^{2}-4 c_{1} x^{3}+4 x^{4}+\left (4 x^{2}-2 c_{1} x \right ) \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}}+\left (-i c_{1}^{2} x^{2}+4 i c_{1} x^{3}-4 i x^{4}+i \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {2}{3}}\right ) \sqrt {3}+\left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {2}{3}}}{12 \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}} x}, y \left (x \right ) = \frac {c_{1}}{6}+\frac {\left (c_{1}-2 x \right )^{2} x}{6 \left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}}}-\frac {x}{3}+\frac {\left (\left (c_{1}^{3} x^{2}-6 c_{1}^{2} x^{3}+12 c_{1} x^{4}-8 x^{5}+3 \sqrt {48 x^{5}-72 c_{1} x^{4}+36 c_{1}^{2} x^{3}-6 c_{1}^{3} x^{2}+81}-27\right ) x \right )^{\frac {1}{3}}}{6 x}\right \}\]