\[ \left (2 x^2 y(x)^3+x y(x)^4+2 y(x)+x\right ) y'(x)+y(x)^5+y(x)=0 \] ✓ Mathematica : cpu = 0.35088 (sec), leaf count = 669
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{3 \sqrt [3]{2} x}-\frac {\sqrt [3]{2} \left (-3 c_1 x^2-c_1{}^2\right )}{3 x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \},\left \{y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{6 \sqrt [3]{2} x}+\frac {\left (1+i \sqrt {3}\right ) \left (-3 c_1 x^2-c_1{}^2\right )}{3\ 2^{2/3} x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \},\left \{y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}{6 \sqrt [3]{2} x}+\frac {\left (1-i \sqrt {3}\right ) \left (-3 c_1 x^2-c_1{}^2\right )}{3\ 2^{2/3} x \sqrt [3]{27 x^2+9 c_1{}^2 x^2+3 \sqrt {3} \sqrt {-4 c_1{}^3 x^6+27 x^4-c_1{}^4 x^4+18 c_1{}^2 x^4+4 c_1{}^3 x^2}+2 c_1{}^3}}+\frac {c_1}{3 x}\right \}\right \}\] ✓ Maple : cpu = 0.158 (sec), leaf count = 583
\[\left \{y \left (x \right ) = \frac {12 c_{1} x^{2}+\left (-12 i c_{1} x^{2}-i \left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {2}{3}}+4 i\right ) \sqrt {3}-\left (\left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {1}{3}}+2\right )^{2}}{12 \left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {1}{3}} c_{1} x}, y \left (x \right ) = \frac {12 c_{1} x^{2}+\left (12 i c_{1} x^{2}+i \left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {2}{3}}-4 i\right ) \sqrt {3}-\left (\left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {1}{3}}+2\right )^{2}}{12 \left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+18 c_{1}^{2} x^{2}-x^{2}+c_{1} \left (4 x^{4}-4\right )}\, x -8\right )^{\frac {1}{3}} c_{1} x}, y \left (x \right ) = \frac {\left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+4 c_{1} x^{4}+18 c_{1}^{2} x^{2}-x^{2}-4 c_{1}}\, x -8\right )^{\frac {1}{3}}}{6 c_{1} x}-\frac {2 \left (3 c_{1} x^{2}-1\right )}{3 \left (108 c_{1}^{3} x^{2}+36 c_{1} x^{2}+12 c_{1} \sqrt {3}\, \sqrt {27 c_{1}^{4} x^{2}+4 c_{1} x^{4}+18 c_{1}^{2} x^{2}-x^{2}-4 c_{1}}\, x -8\right )^{\frac {1}{3}} c_{1} x}-\frac {1}{3 c_{1} x}\right \}\]