\[ x^n y(x)^m \left (a x y'(x)+b y(x)\right )+\alpha x y'(x)+\beta y(x)=0 \] ✓ Mathematica : cpu = 0.832767 (sec), leaf count = 102
\[\text {Solve}\left [\frac {m \left ((a \beta -\alpha b) \log \left (x^n y(x)^m (b m-a n)-\alpha n+\beta m\right )+\beta \log (x) (b m-a n)\right )}{(b m-a n) (\beta m-\alpha n)}+\frac {\alpha m \log (\beta m y(x)-\alpha n y(x))}{\beta m-\alpha n}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.466 (sec), leaf count = 73
\[\{x^{-a \beta m n +b \beta \,m^{2}} \left (y \left (x \right )^{m}\right )^{-a n \alpha +b m \alpha } \left (\alpha n -\beta m +\left (a n -b m \right ) x^{n} y \left (x \right )^{m}\right )^{\left (a \beta -\alpha b \right ) m}-c_{1} = 0\}\]