\[ y'(x) \left (\sum _{\nu =1}^p y(x)^{\nu } f(\nu )(x)\right )-\sum _{\nu =1}^q y(x)^{\nu } g(\nu )(x)=0 \] ✗ Mathematica : cpu = 55.8894 (sec), leaf count = 0 , could not solve
DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.241 (sec), leaf count = 78
\[\left \{\frac {y \left (x \right )^{p +1} \Phi \left (-\left (-1\right )^{\mathrm {csgn}\left (i y \left (x \right )^{q}\right )} y \left (x \right )^{q}, 1, \frac {p +1}{q}\right )-y \left (x \right ) \Phi \left (-\left (-1\right )^{\mathrm {csgn}\left (i y \left (x \right )^{q}\right )} y \left (x \right )^{q}, 1, \frac {1}{q}\right )+\left (c_{1}+\int \frac {g_{\nu }\left (x \right )}{f_{\nu }\left (x \right )}d x \right ) q}{q} = 0\right \}\]