\[ \sqrt {y(x)^2-1} y'(x)-\sqrt {x^2-1}=0 \] ✓ Mathematica : cpu = 0.199083 (sec), leaf count = 75
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\frac {1}{2} \text {$\#$1} \sqrt {\text {$\#$1}^2-1}-\frac {1}{2} \log \left (\sqrt {\text {$\#$1}^2-1}+\text {$\#$1}\right )\& \right ]\left [\frac {1}{2} \sqrt {x^2-1} x-\frac {1}{2} \log \left (\sqrt {x^2-1}+x\right )+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.01 (sec), leaf count = 50
\[\left \{c_{1}+\sqrt {x^{2}-1}\, x -\ln \left (x +\sqrt {x^{2}-1}\right )+\ln \left (y \left (x \right )+\sqrt {y \left (x \right )^{2}-1}\right )-\sqrt {y \left (x \right )^{2}-1}\, y \left (x \right ) = 0\right \}\]