\[ a x y(x)^2+y'(x)+y(x)^3=0 \] ✓ Mathematica : cpu = 0.405404 (sec), leaf count = 195
\[\text {Solve}\left [\frac {\text {Ai}'\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \text {Ai}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}{\text {Bi}'\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )-\left (-\frac {1}{2}\right )^{2/3} a^{2/3} x \text {Bi}\left (\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}-\frac {1}{2} \sqrt [3]{-\frac {1}{2}} a^{4/3} x^2\right )}+c_1=0,y(x)\right ]\] ✓ Maple : cpu = 0.089 (sec), leaf count = 62
\[\left \{y \left (x \right ) = \frac {2 a}{a^{2} x^{2}+2 \left (-2 a^{2}\right )^{\frac {1}{3}} \RootOf \left (c_{1} \left (-2 a^{2}\right )^{\frac {1}{3}} x \AiryBi \left (\textit {\_Z} \right )+2 c_{1} \AiryBi \left (1, \textit {\_Z}\right )+\left (-2 a^{2}\right )^{\frac {1}{3}} x \AiryAi \left (\textit {\_Z} \right )+2 \AiryAi \left (1, \textit {\_Z}\right )\right )}\right \}\]
\begin {equation} y^{\prime }\left ( x\right ) =-axy^{2}-y^{3}\tag {1} \end {equation}
This is Abel first order non-linear. The general form is of Abel first kind is\[ y^{\prime }\left ( x\right ) =f_{0}\left ( x\right ) +f_{1}\left ( x\right ) y\left ( x\right ) +f_{2}\left ( x\right ) y^{2}\left ( x\right ) +f_{3}\left ( x\right ) y^{3}\left ( x\right ) \] In this case, \(f_{0}\left ( x\right ) =0,f_{1}\left ( x\right ) =0,f_{2}\left ( x\right ) =-ax,f_{3}\left ( x\right ) =-1\). Note \(\left ( \frac {f_{3}}{f_{2}}\right ) ^{\prime }=\left ( \frac {1}{ax}\right ) ^{\prime }=-\frac {1}{a}\). While Abel second kind has the form\[ \left ( y+g\left ( x\right ) \right ) y^{\prime }\left ( x\right ) =f_{0}\left ( x\right ) +f_{1}\left ( x\right ) y\left ( x\right ) +f_{2}\left ( x\right ) y^{2}\left ( x\right ) \] For \(g\left ( x\right ) \neq 0\).
Looking at (1) again, using the transformation suggested in Kamke \(u=\frac {1}{y}-\frac {1}{2}ax^{2}\) or \(y=\frac {1}{u+\frac {1}{2}ax^{2}}\)Then\[ y^{\prime }=\frac {-u^{\prime }-ax}{\left ( u+\frac {1}{2}ax^{2}\right ) ^{2}}\]
Equating the above to the RHS of (1) gives\begin {align*} \frac {-u^{\prime }-ax}{\left ( u+\frac {1}{2}ax^{2}\right ) ^{2}} & =-ax\left ( \frac {1}{u+\frac {1}{2}ax^{2}}\right ) ^{2}-\left ( \frac {1}{u+\frac {1}{2}ax^{2}}\right ) ^{3}\\ -u^{\prime }-ax & =-ax-\frac {1}{u+\frac {1}{2}ax^{2}}\\ \frac {du}{dx} & =\frac {1}{u+\frac {1}{2}ax^{2}} \end {align*}
Writing as\begin {equation} \frac {dx}{du}=u+\frac {1}{2}ax^{2}\tag {2} \end {equation} This can now be viewed as reverse Riccati in \(x\). Using the standard transformation\begin {equation} x=-\frac {z^{\prime }}{z\left ( \frac {1}{2}a\right ) }=-\frac {2z^{\prime }}{az}\tag {3} \end {equation} Hence\[ \frac {dx}{du}=-\frac {2}{a}\left ( \frac {z^{\prime \prime }}{z}-\frac {\left ( z^{\prime }\right ) ^{2}}{z^{2}}\right ) \] Equating this to RHS of (2) gives a second order Airy ODE where the dependent variable is \(z\) and the independent variable is \(u\)\begin {align*} -\frac {2}{a}\left ( \frac {z^{\prime \prime }}{z}-\frac {\left ( z^{\prime }\right ) ^{2}}{z^{2}}\right ) & =u+\frac {1}{2}a\left ( -\frac {2z^{\prime }}{az}\right ) ^{2}\\ -\frac {2}{a}\frac {z^{\prime \prime }}{z}+\frac {2}{a}\frac {\left ( z^{\prime }\right ) ^{2}}{z^{2}} & =u+\frac {1}{2}a\frac {4\left ( z^{\prime }\right ) ^{2}}{a^{2}z^{2}}\\ -\frac {2}{a}\frac {z^{\prime \prime }}{z}+\frac {2}{a}\frac {\left ( z^{\prime }\right ) ^{2}}{z^{2}} & =u+\frac {2}{a}\frac {\left ( z^{\prime }\right ) ^{2}}{z^{2}}\\ -\frac {2}{a}\frac {z^{\prime \prime }}{z} & =u\\ z^{\prime \prime }\left ( u\right ) +\frac {a}{2}uz\left ( u\right ) & =0 \end {align*}
This is Airy ODE whose solution is found using power series method. The solution is\begin {equation} z\left ( u\right ) =C_{1}\operatorname {AiryAI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) +C_{2}\operatorname {AiryBI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) \tag {4} \end {equation} We now go back to (3) and find \(x\)\[ x=-\frac {2z^{\prime }}{az}\] Since \begin {align*} \frac {d}{du}\operatorname {AiryAI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) & =-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}\operatorname {AiryAI}\left ( 1,-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) \\ \frac {d}{du}\operatorname {AiryBI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) & =-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}\operatorname {AiryBI}\left ( 1,-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) \end {align*}
Then \[ x=-\frac {2}{a}\frac {-C_{1}\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}\operatorname {AiryAI}\left ( 1,-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) -C_{2}\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}\operatorname {AiryBI}\left ( 1,-\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) }{C_{1}\operatorname {AiryAI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) +C_{2}\operatorname {AiryBI}\left ( -\frac {1}{2}2^{\frac {2}{3}}a^{\frac {1}{3}}u\right ) }\] Therefore \(\frac {dx}{du}\) is now found from above. Once we find \(\frac {dx}{du}\) then \(\frac {du}{dx}\) is also found. Using \(\frac {du}{dx}=\frac {1}{u+\frac {1}{2}ax^{2}}\) now \(u\left ( x\right ) \) is found. Once \(u\left ( x\right ) \) is found then \(y\left ( x\right ) \) is found from the original transformation \(y=\frac {1}{u+\frac {1}{2}ax^{2}}\). This is all now just algebra.