\[ y'(x)^2-2 y'(x)-y(x)^2=0 \] ✓ Mathematica : cpu = 0.0867985 (sec), leaf count = 73
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\text {$\#$1}^2+1}}{\text {$\#$1}}-\frac {1}{\text {$\#$1}}+\sinh ^{-1}(\text {$\#$1})\& \right ][-x+c_1]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\text {$\#$1}^2+1}}{\text {$\#$1}}+\frac {1}{\text {$\#$1}}+\sinh ^{-1}(\text {$\#$1})\& \right ][x+c_1]\right \}\right \}\] ✓ Maple : cpu = 0.036 (sec), leaf count = 85
\[\left \{-c_{1}+x -\arcsinh \left (y \left (x \right )\right )-\sqrt {y \left (x \right )^{2}+1}\, y \left (x \right )+\frac {\left (y \left (x \right )^{2}+1\right )^{\frac {3}{2}}}{y \left (x \right )}-\frac {1}{y \left (x \right )} = 0, -c_{1}+x +\arcsinh \left (y \left (x \right )\right )+\sqrt {y \left (x \right )^{2}+1}\, y \left (x \right )-\frac {1}{y \left (x \right )}-\frac {\left (y \left (x \right )^{2}+1\right )^{\frac {3}{2}}}{y \left (x \right )} = 0\right \}\]