\[ y'(x)^2+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.404607 (sec), leaf count = 1757
\[\left \{\left \{y(x)\to -\frac {x^2}{4}-\frac {1}{4} \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}+\frac {-9 x^4-72 \cosh (3 c_1) x-72 \sinh (3 c_1) x}{36 \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}-\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4-72 \cosh (3 c_1) x-72 \sinh (3 c_1) x\right )}{72 \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}-\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4-72 \cosh (3 c_1) x-72 \sinh (3 c_1) x\right )}{72 \sqrt [3]{x^6-20 \cosh (3 c_1) x^3-20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {-\cosh (3 c_1) x^9-\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6-3 \cosh (9 c_1) x^3-3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \},\left \{y(x)\to -\frac {x^2}{4}-\frac {1}{4} \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}+\frac {-9 x^4+72 \cosh (3 c_1) x+72 \sinh (3 c_1) x}{36 \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}-\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4+72 \cosh (3 c_1) x+72 \sinh (3 c_1) x\right )}{72 \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}-\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4+72 \cosh (3 c_1) x+72 \sinh (3 c_1) x\right )}{72 \sqrt [3]{x^6+20 \cosh (3 c_1) x^3+20 \sinh (3 c_1) x^3-8 \cosh (6 c_1)-8 \sinh (6 c_1)+8 \sqrt {\cosh (3 c_1) x^9+\sinh (3 c_1) x^9+3 \cosh (6 c_1) x^6+3 \sinh (6 c_1) x^6+3 \cosh (9 c_1) x^3+3 \sinh (9 c_1) x^3+\cosh (12 c_1)+\sinh (12 c_1)}}}\right \}\right \}\] ✓ Maple : cpu = 0.04 (sec), leaf count = 619
\[\left \{y \left (x \right ) = \frac {\left (-i \sqrt {3}\, x^{2}-x^{2}-2 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}} x +i \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}} \sqrt {3}-\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}\right ) \left (-i \sqrt {3}\, x^{2}-x^{2}+6 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}} x +i \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}} \sqrt {3}-\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}\right )}{16 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}}, y \left (x \right ) = \frac {\left (-i \sqrt {3}\, x^{2}+x^{2}+2 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}} x +i \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}} \sqrt {3}+\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}\right ) \left (-i \sqrt {3}\, x^{2}+x^{2}-6 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}} x +i \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}} \sqrt {3}+\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}\right )}{16 \left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}}, y \left (x \right ) = \left (\frac {x^{2}}{\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}}-x +\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}\right ) x +\frac {\left (\frac {x^{2}}{\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}}-x +\left (-x^{3}+6 c_{1}+2 \sqrt {-3 c_{1} x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}\right )^{2}}{4}\right \}\]