\[ y'(x)^2-3 x y(x)^{2/3} y'(x)+9 y(x)^{5/3}=0 \] ✓ Mathematica : cpu = 1.75629 (sec), leaf count = 258
\[\left \{\text {Solve}\left [-\frac {\left (x^2-4 \sqrt [3]{y(x)}\right )^{3/2} y(x)^2 \log (y(x))}{6 \left (\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}\right )^{3/2}}+\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}+x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}+\frac {1}{6} \log (y(x))=c_1,y(x)\right ],\text {Solve}\left [\frac {1}{6} \left (\frac {\left (x^2-4 \sqrt [3]{y(x)}\right )^{3/2} y(x)^2 \log (y(x))}{\left (\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}\right )^{3/2}}+\log (y(x))\right )-\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}+x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 2.125 (sec), leaf count = 138
\[\left \{-c_{1}-\frac {\sqrt {-4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {5}{3}}+\left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {4}{3}}}\, \arctanh \left (\sqrt {-4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {1}{3}}+1}\right )}{\left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {2}{3}} \sqrt {-4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {1}{3}}+1}}+\ln \left (x \right )+\frac {\ln \left (\frac {y \left (x \right )}{x^{6}}\right )}{6}-\frac {\ln \left (4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {1}{3}}-1\right )}{6}+\frac {\ln \left (\frac {64 y \left (x \right )}{x^{6}}-1\right )}{6}-\frac {\ln \left (16 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {2}{3}}+4 \left (\frac {y \left (x \right )}{x^{6}}\right )^{\frac {1}{3}}+1\right )}{6} = 0, y \left (x \right ) = \frac {x^{6}}{64}\right \}\]