\[ a y'(x)^2+y(x) y'(x)-x=0 \] ✓ Mathematica : cpu = 1.31218 (sec), leaf count = 61
\[\text {Solve}\left [\left \{x=\frac {a K[1] \sin ^{-1}(K[1])}{\sqrt {1-K[1]^2}}+\frac {c_1 K[1]}{\sqrt {1-K[1]^2}},y(x)=\frac {x}{K[1]}-a K[1]\right \},\{y(x),K[1]\}\right ]\] ✓ Maple : cpu = 0.19 (sec), leaf count = 375
\[\left \{\frac {c_{1} \left (y \left (x \right )-\sqrt {4 a x +y \left (x \right )^{2}}\right )}{\sqrt {\frac {2 a -y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}}{a}}\, \sqrt {\frac {-2 a -y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}}{a}}}+x +\frac {\left (-y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}\right ) \ln \left (\frac {\sqrt {\frac {-4 a^{2}+4 a x +2 y \left (x \right )^{2}-2 \sqrt {4 a x +y \left (x \right )^{2}}\, y \left (x \right )}{a^{2}}}\, a -y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}}{2 a}\right )}{\sqrt {-\frac {2 \left (2 a^{2}-2 a x -y \left (x \right )^{2}+\sqrt {4 a x +y \left (x \right )^{2}}\, y \left (x \right )\right )}{a^{2}}}} = 0, \frac {c_{1} \left (y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}\right )}{\sqrt {\frac {4 a -2 y \left (x \right )-2 \sqrt {4 a x +y \left (x \right )^{2}}}{a}}\, \sqrt {\frac {-4 a -2 y \left (x \right )-2 \sqrt {4 a x +y \left (x \right )^{2}}}{a}}}+x -\frac {\left (y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}\right ) \sqrt {2}\, \ln \left (-\frac {-\sqrt {2}\, \sqrt {\frac {-2 a^{2}+2 a x +y \left (x \right )^{2}+\sqrt {4 a x +y \left (x \right )^{2}}\, y \left (x \right )}{a^{2}}}\, a +y \left (x \right )+\sqrt {4 a x +y \left (x \right )^{2}}}{2 a}\right )}{2 \sqrt {\frac {-2 a^{2}+2 a x +y \left (x \right )^{2}+\sqrt {4 a x +y \left (x \right )^{2}}\, y \left (x \right )}{a^{2}}}} = 0\right \}\]