\[ a+x y'(x)^2-2 y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.308459 (sec), leaf count = 777
\[\left \{\left \{y(x)\to \frac {1}{4} a^2 e^{-\frac {3 c_1}{2}} x^2+\frac {1}{4} e^{-\frac {3 c_1}{2}} \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}-\frac {e^{-\frac {3 c_1}{2}} \left (-9 a^4 x^4-72 a e^{3 c_1} x\right )}{36 \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}}\right \},\left \{y(x)\to \frac {1}{4} a^2 e^{-\frac {3 c_1}{2}} x^2-\frac {1}{8} \left (1-i \sqrt {3}\right ) e^{-\frac {3 c_1}{2}} \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}+\frac {\left (1+i \sqrt {3}\right ) e^{-\frac {3 c_1}{2}} \left (-9 a^4 x^4-72 a e^{3 c_1} x\right )}{72 \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}}\right \},\left \{y(x)\to \frac {1}{4} a^2 e^{-\frac {3 c_1}{2}} x^2-\frac {1}{8} \left (1+i \sqrt {3}\right ) e^{-\frac {3 c_1}{2}} \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}+\frac {\left (1-i \sqrt {3}\right ) e^{-\frac {3 c_1}{2}} \left (-9 a^4 x^4-72 a e^{3 c_1} x\right )}{72 \sqrt [3]{a^6 x^6-20 a^3 e^{3 c_1} x^3+8 \sqrt {-a^9 e^{3 c_1} x^9+3 a^6 e^{6 c_1} x^6-3 a^3 e^{9 c_1} x^3+e^{12 c_1}}-8 e^{6 c_1}}}\right \}\right \}\] ✓ Maple : cpu = 0.053 (sec), leaf count = 689
\[\left \{y \left (x \right ) = \frac {3 c_{1} a}{\frac {4 x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+2 x +\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+\frac {\left (\frac {4 x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+2 x +\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}\right ) x}{12 c_{1}}, y \left (x \right ) = -\frac {6 c_{1} a}{\frac {4 \left (1+i \sqrt {3}\right ) x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}-4 x -i \sqrt {3}\, \left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}+\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}-\frac {\left (\frac {\left (1+i \sqrt {3}\right ) x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}-x -\frac {i \sqrt {3}\, \left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}{4}+\frac {\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}{4}\right ) x}{6 c_{1}}, y \left (x \right ) = \frac {6 c_{1} a}{\frac {4 \left (i \sqrt {3}-1\right ) x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+4 x -i \sqrt {3}\, \left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}-\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+\frac {\left (\frac {\left (i \sqrt {3}-1\right ) x^{2}}{\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}+x -\frac {i \sqrt {3}\, \left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}{4}-\frac {\left (-36 c_{1}^{2} a +8 x^{3}+12 c_{1} \sqrt {\left (9 c_{1}^{2} a -4 x^{3}\right ) a}\right )^{\frac {1}{3}}}{4}\right ) x}{6 c_{1}}\right \}\]