\[ a y(x) y'(x)+b x+x y'(x)^2=0 \] ✓ Mathematica : cpu = 0.89173 (sec), leaf count = 223
\[\left \{\text {Solve}\left [\frac {-2 a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+(a+2) \left (2 \tan ^{-1}\left (\frac {(a+2) y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )-i \log \left (\frac {(a+1) y(x)^2}{x^2}+b\right )\right )}{8 (a+1)}=\frac {1}{2} i \log (x)+c_1,y(x)\right ],\text {Solve}\left [\frac {-2 a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+(a+2) \left (2 \tan ^{-1}\left (\frac {(a+2) y(x)}{x \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}\right )+i \log \left (\frac {(a+1) y(x)^2}{x^2}+b\right )\right )}{8 (a+1)}=c_1-\frac {1}{2} i \log (x),y(x)\right ]\right \}\] ✓ Maple : cpu = 0.115 (sec), leaf count = 193
\[\left \{\frac {-c_{1} \left (a y \left (x \right )-\sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}\right ) \left (\frac {\left (-2 b \,x^{2}+\left (a^{2}+a \right ) y \left (x \right )^{2}-\left (a +1\right ) \sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}\, y \left (x \right )\right ) a}{2 x^{2}}\right )^{\frac {-a -2}{2 a +2}}+x^{2}}{x} = 0, \frac {c_{1} \left (a y \left (x \right )+\sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}\right ) \left (\frac {\left (-2 b \,x^{2}+\left (a^{2}+a \right ) y \left (x \right )^{2}+\left (a +1\right ) \sqrt {a^{2} y \left (x \right )^{2}-4 b \,x^{2}}\, y \left (x \right )\right ) a}{2 x^{2}}\right )^{\frac {-a -2}{2 a +2}}+x^{2}}{x} = 0\right \}\]