\[ x^2 y'(x)^2-y(x)^4+y(x)^2=0 \] ✓ Mathematica : cpu = 0.058878 (sec), leaf count = 81
\[\left \{\left \{y(x)\to -\sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to -\sqrt {1+\tan ^2(\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(\log (x)+c_1)}\right \}\right \}\] ✓ Maple : cpu = 0.208 (sec), leaf count = 62
\[\left \{y \left (x \right ) = -1, y \left (x \right ) = 1, y \left (x \right ) = \frac {\sqrt {\tan ^{2}\left (c_{1}-\ln \left (x \right )\right )+1}}{\tan \left (c_{1}-\ln \left (x \right )\right )}, y \left (x \right ) = -\frac {\sqrt {\tan ^{2}\left (c_{1}-\ln \left (x \right )\right )+1}}{\tan \left (c_{1}-\ln \left (x \right )\right )}\right \}\]