\[ x^2 \left (x^2-a^2\right ) y'(x)^2-1=0 \] ✓ Mathematica : cpu = 0.0230423 (sec), leaf count = 120
\[\left \{\left \{y(x)\to -\frac {x \sqrt {x^2-a^2} \tan ^{-1}\left (\frac {\sqrt {x^2-a^2}}{a}\right )}{a \sqrt {x^4-a^2 x^2}}+c_1\right \},\left \{y(x)\to \frac {x \sqrt {x^2-a^2} \tan ^{-1}\left (\frac {\sqrt {x^2-a^2}}{a}\right )}{a \sqrt {x^4-a^2 x^2}}+c_1\right \}\right \}\] ✓ Maple : cpu = 0.061 (sec), leaf count = 90
\[\left \{y \left (x \right ) = c_{1}-\frac {\ln \left (\frac {-2 a^{2}+2 \sqrt {-a^{2}}\, \sqrt {-a^{2}+x^{2}}}{x}\right )}{\sqrt {-a^{2}}}, y \left (x \right ) = c_{1}+\frac {\ln \left (\frac {-2 a^{2}+2 \sqrt {-a^{2}}\, \sqrt {-a^{2}+x^{2}}}{x}\right )}{\sqrt {-a^{2}}}\right \}\]