\[ (y(x)+x) y'(x)^2+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.592004 (sec), leaf count = 269
\[\left \{\left \{y(x)\to -\frac {2 \sqrt {-\sqrt {3} x \cosh (c_1)-\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}-\frac {\cosh (c_1)}{\sqrt {3}}-\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to \frac {2 \sqrt {-\sqrt {3} x \cosh (c_1)-\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}-\frac {\cosh (c_1)}{\sqrt {3}}-\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to -\frac {2 \sqrt {\sqrt {3} x \cosh (c_1)+\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}+\frac {\cosh (c_1)}{\sqrt {3}}+\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to \frac {2 \sqrt {\sqrt {3} x \cosh (c_1)+\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}+\frac {\cosh (c_1)}{\sqrt {3}}+\frac {\sinh (c_1)}{\sqrt {3}}\right \}\right \}\] ✓ Maple : cpu = 0.487 (sec), leaf count = 121
\[\left \{-c_{1}-\arctanh \left (\frac {2 x +y \left (x \right )}{2 \sqrt {\frac {x^{2}+x y \left (x \right )+y \left (x \right )^{2}}{x^{2}}}\, x}\right )+\ln \left (x \right )+\ln \left (\frac {y \left (x \right )}{x}\right ) = 0, -c_{1}+\arctanh \left (\frac {2 x +y \left (x \right )}{2 \sqrt {\frac {x^{2}+x y \left (x \right )+y \left (x \right )^{2}}{x^{2}}}\, x}\right )+\ln \left (x \right )+\ln \left (\frac {y \left (x \right )}{x}\right ) = 0, y \left (x \right ) = -\frac {\left (1+i \sqrt {3}\right ) x}{2}, y \left (x \right ) = \frac {\left (i \sqrt {3}-1\right ) x}{2}\right \}\]