\[ 4 x^3 y'(x)-4 x^2 y(x)+9 y(x) y'(x)^2=0 \] ✓ Mathematica : cpu = 0.459249 (sec), leaf count = 143
\[\left \{\text {Solve}\left [\frac {1}{2} \log (y(x))-\frac {\sqrt {x^6+9 x^2 y(x)^2} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x^4+9 y(x)^2}}\right )}{2 x \sqrt {x^4+9 y(x)^2}}=c_1,y(x)\right ],\text {Solve}\left [\frac {\sqrt {x^6+9 x^2 y(x)^2} \tanh ^{-1}\left (\frac {x^2}{\sqrt {x^4+9 y(x)^2}}\right )}{2 x \sqrt {x^4+9 y(x)^2}}+\frac {1}{2} \log (y(x))=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.494 (sec), leaf count = 87
\[\left \{y \left (x \right ) = -\frac {\sqrt {-4 c_{1} x^{2}+c_{1}^{2}}}{6}, y \left (x \right ) = \frac {\sqrt {-4 c_{1} x^{2}+c_{1}^{2}}}{6}, y \left (x \right ) = -\frac {i x^{2}}{3}, y \left (x \right ) = \frac {i x^{2}}{3}, y \left (x \right ) = -\frac {2 \sqrt {c_{1} x^{2}+9}}{c_{1}}, y \left (x \right ) = \frac {2 \sqrt {c_{1} x^{2}+9}}{c_{1}}\right \}\]