\[ -6 x^3 y'(x)+4 x^2 y(x)+y(x)^2 y'(x)^2=0 \] ✓ Mathematica : cpu = 0.507485 (sec), leaf count = 157
\[\left \{\text {Solve}\left [\frac {3}{4} \log (y(x))-\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \tanh ^{-1}\left (\frac {3 x^2}{\sqrt {9 x^4-4 y(x)^3}}\right )}{2 x \sqrt {9 x^4-4 y(x)^3}}=c_1,y(x)\right ],\text {Solve}\left [\frac {\sqrt {9 x^6-4 x^2 y(x)^3} \tanh ^{-1}\left (\frac {3 x^2}{\sqrt {9 x^4-4 y(x)^3}}\right )}{2 x \sqrt {9 x^4-4 y(x)^3}}+\frac {3}{4} \log (y(x))=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.464 (sec), leaf count = 100
\[\left \{y \left (x \right ) = x^{\frac {4}{3}} \RootOf \left (c_{1}+\int _{}^{\textit {\_Z}}-\frac {3 \left (4 \textit {\_a}^{3}+3 \sqrt {-4 \textit {\_a}^{3}+9}-9\right )}{4 \left (4 \textit {\_a}^{3}-9\right ) \textit {\_a}}d \textit {\_a} -\ln \left (x \right )\right ), y \left (x \right ) = \frac {18^{\frac {1}{3}} x^{\frac {4}{3}}}{2}, y \left (x \right ) = -\frac {18^{\frac {1}{3}} \left (1+i \sqrt {3}\right ) x^{\frac {4}{3}}}{4}, y \left (x \right ) = \frac {18^{\frac {1}{3}} \left (i \sqrt {3}-1\right ) x^{\frac {4}{3}}}{4}\right \}\]