\[ -a x y(x) y'(x)+2 a y(x)^2+y'(x)^2=0 \] ✓ Mathematica : cpu = 0.0889798 (sec), leaf count = 135
\[\left \{\left \{y(x)\to c_1 \exp \left (\frac {1}{2} \left (\frac {a x^2}{2}+\frac {1}{2} \sqrt {a} x \sqrt {a x^2-8}-4 \log \left (\sqrt {a} \sqrt {a x^2-8}+a x\right )\right )\right )\right \},\left \{y(x)\to c_1 \exp \left (\frac {1}{2} \left (\frac {a x^2}{2}-\frac {1}{2} \sqrt {a} x \sqrt {a x^2-8}+4 \log \left (\sqrt {a} \sqrt {a x^2-8}+a x\right )\right )\right )\right \}\right \}\] ✓ Maple : cpu = 0.237 (sec), leaf count = 122
\[\left \{y \left (x \right ) = c_{1} \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-8 a}\right )^{-\frac {2 a}{\sqrt {a^{2}}}} {\mathrm e}^{\frac {\left (a x +\sqrt {a^{2} x^{2}-8 a}\right ) x}{4}}, y \left (x \right ) = c_{1} \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-8 a}\right )^{\frac {2 a}{\sqrt {a^{2}}}} {\mathrm e}^{\frac {a \,x^{2}}{4}-\frac {\sqrt {a^{2} x^{2}-8 a}\, x}{4}}\right \}\]