\[ a y'(x)^3+b y'(x)^2+c y'(x)-d-y(x)=0 \] ✓ Mathematica : cpu = 0.0291744 (sec), leaf count = 1124
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{2 b \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2 \sqrt [3]{2} b^2-6 \sqrt [3]{2} a c}d\text {$\#$1}\& \right ]\left [c_1-\frac {x}{6 a}\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{-4 b \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}-2^{2/3} i \sqrt {3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2 \sqrt [3]{2} b^2-6 \sqrt [3]{2} a c+2 \sqrt [3]{2} b^2 i \sqrt {3}-6 \sqrt [3]{2} a c i \sqrt {3}}d\text {$\#$1}\& \right ]\left [\frac {x}{12 a}+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{-4 b \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2^{2/3} i \sqrt {3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2 \sqrt [3]{2} b^2-6 \sqrt [3]{2} a c-2 \sqrt [3]{2} b^2 i \sqrt {3}+6 \sqrt [3]{2} a c i \sqrt {3}}d\text {$\#$1}\& \right ]\left [\frac {x}{12 a}+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.478 (sec), leaf count = 874
\[\left \{-c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {6 \,6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {1}{3}} a}{-12 \,6^{\frac {1}{3}} a c +4 \,6^{\frac {1}{3}} b^{2}-4 \,27^{\frac {1}{3}} \left (\sqrt {3}\, \left (\frac {\sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a}{3}+\left (\frac {a b c}{3}-\frac {2 b^{3}}{27}+\left (\textit {\_a} +d \right ) a^{2}\right ) \sqrt {3}\right )\right )^{\frac {1}{3}} b +6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {2}{3}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {12 \,6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {1}{3}} a}{8 \,27^{\frac {1}{3}} \left (\sqrt {3}\, \left (\frac {\sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a}{3}+\left (\frac {a b c}{3}-\frac {2 b^{3}}{27}+\left (\textit {\_a} +d \right ) a^{2}\right ) \sqrt {3}\right )\right )^{\frac {1}{3}} b +\left (1-i \sqrt {3}\right ) 6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {2}{3}}-12 \left (1+i \sqrt {3}\right ) \left (a c -\frac {b^{2}}{3}\right ) 6^{\frac {1}{3}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {12 \,6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {1}{3}} a}{8 \,27^{\frac {1}{3}} \left (\sqrt {3}\, \left (\frac {\sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a}{3}+\left (\frac {a b c}{3}-\frac {2 b^{3}}{27}+\left (\textit {\_a} +d \right ) a^{2}\right ) \sqrt {3}\right )\right )^{\frac {1}{3}} b +\left (1+i \sqrt {3}\right ) 6^{\frac {1}{3}} \left (36 a b c -8 b^{3}+\left (108 \textit {\_a} +108 d \right ) a^{2}+12 \sqrt {3}\, \sqrt {-b^{2} c^{2}+\left (-4 \textit {\_a} -4 d \right ) b^{3}+27 \left (\textit {\_a} +d \right )^{2} a^{2}+18 \left (\frac {2 c^{2}}{9}+\left (\textit {\_a} +d \right ) b \right ) a c}\, a \right )^{\frac {2}{3}}+12 \left (i \sqrt {3}-1\right ) \left (a c -\frac {b^{2}}{3}\right ) 6^{\frac {1}{3}}}d \textit {\_a} \right ) = 0\right \}\]