\[ 16 y(x)^2 y'(x)^3+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.0342954 (sec), leaf count = 20
\[\left \{\left \{y(x)\to \sqrt {c_1 x+2 c_1{}^3}\right \}\right \}\] ✓ Maple : cpu = 0.522 (sec), leaf count = 107
\[\left \{y \left (x \right ) = \sqrt {16 c_{1}^{3}+2 c_{1} x}, y \left (x \right ) = -\sqrt {16 c_{1}^{3}+2 c_{1} x}, y \left (x \right ) = -\frac {2^{\frac {1}{4}} 3^{\frac {1}{4}} \left (-x^{3}\right )^{\frac {1}{4}}}{3}, y \left (x \right ) = \frac {2^{\frac {1}{4}} 3^{\frac {1}{4}} \left (-x^{3}\right )^{\frac {1}{4}}}{3}, y \left (x \right ) = -\frac {i 2^{\frac {1}{4}} 3^{\frac {1}{4}} \left (-x^{3}\right )^{\frac {1}{4}}}{3}, y \left (x \right ) = \frac {i 2^{\frac {1}{4}} 3^{\frac {1}{4}} \left (-x^{3}\right )^{\frac {1}{4}}}{3}\right \}\]