\[ y'(x)^4-(y(x)-a)^3 (y(x)-b)^2=0 \] ✓ Mathematica : cpu = 0.925847 (sec), leaf count = 323
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-\sqrt [4]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [\sqrt [4]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-(-1)^{3/4} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [(-1)^{3/4} x+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.214 (sec), leaf count = 144
\[\left \{-c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {1}{\left (\left (\textit {\_a} -a \right )^{3} \left (\textit {\_a} -b \right )^{2}\right )^{\frac {1}{4}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {i}{\left (-\left (-\textit {\_a} +a \right )^{3} \left (-\textit {\_a} +b \right )^{2}\right )^{\frac {1}{4}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {1}{\left (-\left (-\textit {\_a} +a \right )^{3} \left (-\textit {\_a} +b \right )^{2}\right )^{\frac {1}{4}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {i}{\left (-\left (-\textit {\_a} +a \right )^{3} \left (-\textit {\_a} +b \right )^{2}\right )^{\frac {1}{4}}}d \textit {\_a} \right ) = 0, y \left (x \right ) = a, y \left (x \right ) = b\right \}\]