\[ y'(x)^6-(y(x)-a)^4 (y(x)-b)^3=0 \] ✓ Mathematica : cpu = 1.09469 (sec), leaf count = 479
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ][c_1-i x]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ][i x+c_1]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-\sqrt [6]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [\sqrt [6]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-(-1)^{5/6} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [(-1)^{5/6} x+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.413 (sec), leaf count = 250
\[\left \{-c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {1}{\left (-\left (-\textit {\_a} +a \right )^{4} \left (-\textit {\_a} +b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {2 i}{\left (i-\sqrt {3}\right ) \left (-\left (-\textit {\_a} +a \right )^{4} \left (-\textit {\_a} +b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {2 i}{\left (i-\sqrt {3}\right ) \left (-\left (-\textit {\_a} +a \right )^{4} \left (-\textit {\_a} +b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}-\frac {2 i}{\left (\sqrt {3}+i\right ) \left (-\left (-\textit {\_a} +a \right )^{4} \left (-\textit {\_a} +b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, -c_{1}+x -\left (\int _{}^{y \left (x \right )}\frac {2 i}{\left (\sqrt {3}+i\right ) \left (-\left (-\textit {\_a} +a \right )^{4} \left (-\textit {\_a} +b \right )^{3}\right )^{\frac {1}{6}}}d \textit {\_a} \right ) = 0, y \left (x \right ) = a, y \left (x \right ) = b\right \}\]