\[ y'(x)=F\left (\frac {y(x)}{a+x}\right ) \] ✓ Mathematica : cpu = 0.309148 (sec), leaf count = 243
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{-a F\left (\frac {K[2]}{a+x}\right )-x F\left (\frac {K[2]}{a+x}\right )+K[2]}-\int _1^x\left (\frac {F'\left (\frac {K[2]}{a+K[1]}\right )}{(a+K[1]) \left (a F\left (\frac {K[2]}{a+K[1]}\right )+K[1] F\left (\frac {K[2]}{a+K[1]}\right )-K[2]\right )}-\frac {F\left (\frac {K[2]}{a+K[1]}\right ) \left (\frac {a F'\left (\frac {K[2]}{a+K[1]}\right )}{a+K[1]}+\frac {K[1] F'\left (\frac {K[2]}{a+K[1]}\right )}{a+K[1]}-1\right )}{\left (a F\left (\frac {K[2]}{a+K[1]}\right )+K[1] F\left (\frac {K[2]}{a+K[1]}\right )-K[2]\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {F\left (\frac {y(x)}{a+K[1]}\right )}{a F\left (\frac {y(x)}{a+K[1]}\right )+K[1] F\left (\frac {y(x)}{a+K[1]}\right )-y(x)}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.039 (sec), leaf count = 28
\[\left \{y \left (x \right ) = -\left (a +x \right ) \RootOf \left (c_{1}+\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a} +F \left (-\textit {\_a} \right )}d \textit {\_a} +\ln \left (a +x \right )\right )\right \}\]