\[ y'(x)=\frac {2 a}{2 a F\left (y(x)^2-4 a x\right )+y(x)} \] ✓ Mathematica : cpu = 0.330916 (sec), leaf count = 115
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{4 a^2 F\left (K[2]^2-4 a x\right )}-\frac {2 a \int _1^x\frac {K[2] F'\left (K[2]^2-4 a K[1]\right )}{a F\left (K[2]^2-4 a K[1]\right )^2}dK[1]-1}{2 a}\right )dK[2]+\int _1^x-\frac {1}{2 a F\left (y(x)^2-4 a K[1]\right )}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.107 (sec), leaf count = 35
\[\left \{-c_{1}+\frac {y \left (x \right )}{2 a}+\frac {\int _{}^{-4 a x +y \left (x \right )^{2}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a}}{8 a^{2}} = 0\right \}\]