\[ y'(x)=\frac {x F\left (\frac {y(x)^2-b}{x^2}\right )}{y(x)} \] ✓ Mathematica : cpu = 0.479769 (sec), leaf count = 236
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {K[2]}{-F\left (\frac {K[2]^2-b}{x^2}\right ) x^2+K[2]^2-b}-\int _1^x\left (\frac {F\left (\frac {K[2]^2-b}{K[1]^2}\right ) K[1] \left (2 K[2] F'\left (\frac {K[2]^2-b}{K[1]^2}\right )-2 K[2]\right )}{\left (F\left (\frac {K[2]^2-b}{K[1]^2}\right ) K[1]^2-K[2]^2+b\right )^2}-\frac {2 K[2] F'\left (\frac {K[2]^2-b}{K[1]^2}\right )}{K[1] \left (F\left (\frac {K[2]^2-b}{K[1]^2}\right ) K[1]^2-K[2]^2+b\right )}\right )dK[1]\right )dK[2]+\int _1^x-\frac {F\left (\frac {y(x)^2-b}{K[1]^2}\right ) K[1]}{F\left (\frac {y(x)^2-b}{K[1]^2}\right ) K[1]^2-y(x)^2+b}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.129 (sec), leaf count = 67
\[\left \{y \left (x \right ) = \sqrt {x^{2} \RootOf \left (2 c_{1}+\int _{}^{\textit {\_Z}}\frac {1}{-\textit {\_a} +F \left (\textit {\_a} \right )}d \textit {\_a} -2 \ln \left (x \right )\right )+b}, y \left (x \right ) = -\sqrt {x^{2} \RootOf \left (2 c_{1}+\int _{}^{\textit {\_Z}}\frac {1}{-\textit {\_a} +F \left (\textit {\_a} \right )}d \textit {\_a} -2 \ln \left (x \right )\right )+b}\right \}\]