\[ y'(x)=\frac {y(x)^2 F\left (\frac {1-2 y(x) \log (x)}{y(x)}\right )}{x} \] ✓ Mathematica : cpu = 0.322721 (sec), leaf count = 246
\[\text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x\left (\frac {2 \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right ) K[1]}-\frac {2 F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right ) \left (-\frac {2 \log (K[1])}{K[2]}-\frac {1-2 K[2] \log (K[1])}{K[2]^2}\right ) F'\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )}{\left (F\left (\frac {1-2 K[2] \log (K[1])}{K[2]}\right )+2\right )^2 K[1]}\right )dK[1]-\frac {2}{\left (F\left (\frac {1-2 K[2] \log (x)}{K[2]}\right )+2\right ) K[2]^2}\right )dK[2]+\int _1^x\frac {2 F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )}{\left (F\left (\frac {1-2 \log (K[1]) y(x)}{y(x)}\right )+2\right ) K[1]}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.137 (sec), leaf count = 38
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}\frac {1}{\left (F \left (\frac {-2 \textit {\_a} \ln \left (x \right )+1}{\textit {\_a}}\right )+2\right ) \textit {\_a}^{2}}d \textit {\_a} -\ln \left (x \right ) = 0\right \}\]