\[ y'(x)=\frac {y(x)}{\log (\log (y(x)))-\log (x)+1} \] ✓ Mathematica : cpu = 0.310486 (sec), leaf count = 53
\[\text {Solve}\left [\int _1^{y(x)}\frac {\log (x)-\log (\log (K[1]))-1}{K[1] (x+\log (x) \log (K[1])-\log (K[1])-\log (K[1]) \log (\log (K[1])))}dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.367 (sec), leaf count = 47
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}\frac {\ln \left (x \right )-\ln \left (\ln \left (\textit {\_a} \right )\right )-1}{\left (\ln \left (\textit {\_a} \right ) \ln \left (x \right )-\ln \left (\textit {\_a} \right ) \ln \left (\ln \left (\textit {\_a} \right )\right )+x -\ln \left (\textit {\_a} \right )\right ) \textit {\_a}}d \textit {\_a} = 0\right \}\]