\[ y'(x)=\frac {e^{-4 x/3} y(x)^3}{e^{-2 x/3} y(x)+1} \] ✓ Mathematica : cpu = 14.4572 (sec), leaf count = 82
\[\text {Solve}\left [\frac {3}{2} \log (y(x))+\frac {1}{28} \left (-21 \log \left (-3 y(x)^2+2 e^{2 x/3} y(x)+2 e^{4 x/3}\right )+6 \sqrt {7} \tanh ^{-1}\left (\frac {y(x)+2 e^{2 x/3}}{\sqrt {7} y(x)}\right )+28 x\right )=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.76 (sec), leaf count = 66
\[\left \{-c_{1}+x +\frac {3 \sqrt {7}\, \arctanh \left (\frac {3 \sqrt {7}\, {\mathrm e}^{-\frac {2 x}{3}} y \left (x \right )}{7}-\frac {\sqrt {7}}{7}\right )}{14}+\frac {3 \ln \left ({\mathrm e}^{-\frac {2 x}{3}} y \left (x \right )\right )}{2}-\frac {3 \ln \left (3 \,{\mathrm e}^{-\frac {4 x}{3}} y \left (x \right )^{2}-2 \,{\mathrm e}^{-\frac {2 x}{3}} y \left (x \right )-2\right )}{4} = 0\right \}\]