\[ y'(x)=\frac {e^x \left (3 e^x-2 y(x)^{3/2}\right )^2}{4 \sqrt {y(x)}} \] ✓ Mathematica : cpu = 0.833809 (sec), leaf count = 264
\[\left \{\left \{y(x)\to \frac {\left (-2 e^{3 e^x}+3 e^{x+3 e^x}+3 e^{x+3 c_1}+2 e^{3 c_1}\right ){}^{2/3}}{\sqrt [3]{4 e^{6 e^x}+8 e^{3 e^x+3 c_1}+4 e^{6 c_1}}}\right \},\left \{y(x)\to -\frac {\sqrt [3]{-1} \left (-2 e^{3 e^x}+3 e^{x+3 e^x}+3 e^{x+3 c_1}+2 e^{3 c_1}\right ){}^{2/3}}{\sqrt [3]{4 e^{6 e^x}+8 e^{3 e^x+3 c_1}+4 e^{6 c_1}}}\right \},\left \{y(x)\to \frac {(-1)^{2/3} \left (-2 e^{3 e^x}+3 e^{x+3 e^x}+3 e^{x+3 c_1}+2 e^{3 c_1}\right ){}^{2/3}}{\sqrt [3]{4 e^{6 e^x}+8 e^{3 e^x+3 c_1}+4 e^{6 c_1}}}\right \}\right \}\] ✓ Maple : cpu = 0.195 (sec), leaf count = 72
\[\left \{\frac {\left (2 \,{\mathrm e}^{x} y \left (x \right )^{\frac {3}{2}}-2 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-\frac {3 \,{\mathrm e}^{x}}{2}-\frac {9 \,{\mathrm e}^{2 x}}{8}} {\mathrm e}^{-\frac {3 \,{\mathrm e}^{x}}{2}+\frac {9 \,{\mathrm e}^{2 x}}{8}}}{2 \,{\mathrm e}^{x} y \left (x \right )^{\frac {3}{2}}+2 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}}+c_{1} = 0\right \}\]