\[ y'(x)=\frac {\left (x y(x)^2+1\right )^2}{x^4 y(x)} \] ✓ Mathematica : cpu = 0.409398 (sec), leaf count = 192
\[\left \{\left \{y(x)\to -\frac {\sqrt {-\frac {2}{x}+\sqrt {2} e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-\frac {2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}{x}-\sqrt {2}}}{\sqrt {2+2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}}\right \},\left \{y(x)\to \frac {\sqrt {-\frac {2}{x}+\sqrt {2} e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-\frac {2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}{x}-\sqrt {2}}}{\sqrt {2+2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}}\right \}\right \}\] ✓ Maple : cpu = 0.273 (sec), leaf count = 237
\[\left \{y \left (x \right ) = -\frac {\sqrt {2}\, \sqrt {-\left (c_{1} \left (\sqrt {2}\, x +2\right ) {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+\left (-\sqrt {2}\, x +2\right ) {\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) \left (c_{1} {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+{\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) x}}{2 \left (c_{1} {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+{\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) x}, y \left (x \right ) = \frac {\sqrt {2}\, \sqrt {-\left (c_{1} \left (\sqrt {2}\, x +2\right ) {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+\left (-\sqrt {2}\, x +2\right ) {\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) \left (c_{1} {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+{\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) x}}{2 \left (c_{1} {\mathrm e}^{\frac {-\sqrt {2}\, x -1}{x^{2}}}+{\mathrm e}^{\frac {\sqrt {2}\, x -1}{x^{2}}}\right ) x}\right \}\]