\[ y'(x)=\frac {x^3 \left (-\log \left (\frac {x+1}{x-1}\right )\right )+y(x)+x y(x)^2 \log \left (\frac {x+1}{x-1}\right )}{x} \] ✓ Mathematica : cpu = 0.197236 (sec), leaf count = 130
\[\left \{\left \{y(x)\to \frac {-x^2 (x-1)^{x^2}-x (x-1)^{x^2}-x^2 (x+1)^{x^2} e^{2 x+2 c_1}+x (x+1)^{x^2} e^{2 x+2 c_1}}{-x (x-1)^{x^2}-(x-1)^{x^2}-(x+1)^{x^2} e^{2 x+2 c_1}+x (x+1)^{x^2} e^{2 x+2 c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.119 (sec), leaf count = 39
\[\left \{y \left (x \right ) = -x \tanh \left (\frac {x^{2} \ln \left (\frac {x +1}{x -1}\right )}{2}+c_{1}+x -\frac {\ln \left (\frac {x +1}{x -1}\right )}{2}-1\right )\right \}\]