\[ y'(x)=\frac {y(x) (-x \log (y(x))-\log (y(x))+1)}{x+1} \] ✓ Mathematica : cpu = 0.263492 (sec), leaf count = 28
\[\left \{\left \{y(x)\to e^{e^{-x-1} \text {Ei}(x+1)+c_1 e^{-x}}\right \}\right \}\] ✓ Maple : cpu = 0.266 (sec), leaf count = 31
\[\{y \left (x \right ) = {\mathrm e}^{c_{1} {\mathrm e}^{-x}} {\mathrm e}^{-\Ei \left (1, -x -1\right ) {\mathrm e}^{-x -1}}\}\]