\[ y'(x)=-\frac {y(x) \left (x^3 y(x)+x^2 y(x) \log (x)-x^2+e^x-x \log (x)-\log \left (\frac {1}{x}\right )\right )}{x \left (e^x-\log \left (\frac {1}{x}\right )\right )} \] ✓ Mathematica : cpu = 1.58538 (sec), leaf count = 162
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x-\frac {-K[1]^2-\log (K[1]) K[1]+e^{K[1]}-\log \left (\frac {1}{K[1]}\right )}{K[1] \left (e^{K[1]}-\log \left (\frac {1}{K[1]}\right )\right )}dK[1]\right )}{-\int _1^x-\frac {\exp \left (\int _1^{K[2]}-\frac {-K[1]^2-\log (K[1]) K[1]+e^{K[1]}-\log \left (\frac {1}{K[1]}\right )}{K[1] \left (e^{K[1]}-\log \left (\frac {1}{K[1]}\right )\right )}dK[1]\right ) \left (K[2]^3+\log (K[2]) K[2]^2\right )}{K[2] \left (e^{K[2]}-\log \left (\frac {1}{K[2]}\right )\right )}dK[2]+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.276 (sec), leaf count = 96
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {x^{2}+x \ln \left (x \right )-{\mathrm e}^{x}+\ln \left (\frac {1}{x}\right )}{\left ({\mathrm e}^{x}-\ln \left (\frac {1}{x}\right )\right ) x}d x}}{c_{1}+\int \frac {\left (x +\ln \left (x \right )\right ) x \,{\mathrm e}^{\int \frac {x^{2}+x \ln \left (x \right )-{\mathrm e}^{x}+\ln \left (\frac {1}{x}\right )}{\left ({\mathrm e}^{x}-\ln \left (\frac {1}{x}\right )\right ) x}d x}}{{\mathrm e}^{x}-\ln \left (\frac {1}{x}\right )}d x}\right \}\]