\[ y'(x)=\frac {y(x) \left (x^3+3 y(x)^2\right )}{x \left (6 y(x)^2+x\right )} \] ✓ Mathematica : cpu = 0.364065 (sec), leaf count = 72
\[\left \{\left \{y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\right \},\left \{y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\right \}\right \}\] ✓ Maple : cpu = 0.388 (sec), leaf count = 50
\[\left \{\frac {1}{\frac {6}{x}+\frac {1}{y \left (x \right )^{2}}} = \frac {\left ({\mathrm e}^{\RootOf \left (x^{2} {\mathrm e}^{\textit {\_Z}}+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x}{2}\right )+9\right )}+9\right ) x}{54}\right \}\]