\[ y'(x)=\frac {x (x-y(x))^2 (y(x)+x)^2}{y(x)} \] ✓ Mathematica : cpu = 0.191214 (sec), leaf count = 126
\[\left \{\left \{y(x)\to -\frac {\sqrt {x^2+x^2 e^{2 x^2+4 c_1}-e^{2 x^2+4 c_1}+1}}{\sqrt {1+e^{2 x^2+4 c_1}}}\right \},\left \{y(x)\to \frac {\sqrt {x^2+x^2 e^{2 x^2+4 c_1}-e^{2 x^2+4 c_1}+1}}{\sqrt {1+e^{2 x^2+4 c_1}}}\right \}\right \}\] ✓ Maple : cpu = 0.123 (sec), leaf count = 192
\[\left \{y \left (x \right ) = \frac {\sqrt {\left (c_{1} \left (x^{2}-1\right ) {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+\left (x^{2}+1\right ) {\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}\right ) \left (c_{1} {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+{\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}\right )}}{c_{1} {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+{\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}}, y \left (x \right ) = -\frac {\sqrt {\left (c_{1} \left (x^{2}-1\right ) {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+\left (x^{2}+1\right ) {\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}\right ) \left (c_{1} {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+{\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}\right )}}{c_{1} {\mathrm e}^{-\frac {\left (x^{2}-2\right ) x^{2}}{2}}+{\mathrm e}^{-\frac {\left (x^{2}+2\right ) x^{2}}{2}}}\right \}\]