\[ y'(x)=\frac {y(x) \left (x^4-x \log (y(x))-\log (y(x))\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.201401 (sec), leaf count = 50
\[\left \{\left \{y(x)\to (x+1)^{\frac {1}{x}} e^{\frac {x^3}{4}-\frac {x^2}{3}+\frac {x}{2}-\frac {25}{12 x}-\frac {c_1}{x}-1}\right \}\right \}\] ✓ Maple : cpu = 0.218 (sec), leaf count = 36
\[\left \{y \left (x \right ) = {\mathrm e}^{-1} \left (x +1\right )^{\frac {1}{x}} {\mathrm e}^{\frac {c_{1}}{x}} {\mathrm e}^{\frac {x}{2}} {\mathrm e}^{-\frac {x^{2}}{3}} {\mathrm e}^{\frac {x^{3}}{4}}\right \}\]