\[ y'(x)=\frac {y(x) \left (x^2 y(x) \log \left (\frac {(x-1) (x+1)}{x}\right )-x \log \left (\frac {(x-1) (x+1)}{x}\right )-\log (x)\right )}{x \log (x)} \] ✓ Mathematica : cpu = 0.383213 (sec), leaf count = 129
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\log (K[1])-K[1] \log \left (\frac {(K[1]-1) (K[1]+1)}{K[1]}\right )}{K[1] \log (K[1])}dK[1]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[2]}\frac {-\log (K[1])-K[1] \log \left (\frac {(K[1]-1) (K[1]+1)}{K[1]}\right )}{K[1] \log (K[1])}dK[1]\right ) K[2] \log \left (\frac {(K[2]-1) (K[2]+1)}{K[2]}\right )}{\log (K[2])}dK[2]+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.186 (sec), leaf count = 89
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )-\ln \left (x \right )}{x \ln \left (x \right )}d x}}{c_{1}+\int -\frac {x \,{\mathrm e}^{\int \frac {-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )-\ln \left (x \right )}{x \ln \left (x \right )}d x} \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )}{\ln \left (x \right )}d x}\right \}\]