\[ y'(x)=\frac {y(x)^2+x y(x)+x}{(x-1) (y(x)+x)} \] ✓ Mathematica : cpu = 0.220879 (sec), leaf count = 61
\[\text {Solve}\left [\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+\frac {y(x)}{x}+1\right )+\frac {\tan ^{-1}\left (\frac {\frac {2 y(x)}{x}+1}{\sqrt {3}}\right )}{\sqrt {3}}=\log (1-x)-\log (x)+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.239 (sec), leaf count = 48
\[\left \{y \left (x \right ) = \frac {\sqrt {3}\, x \tan \left (\RootOf \left (2 c_{1} \sqrt {3}-2 \textit {\_Z} -\sqrt {3}\, \ln \left (\frac {3 \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right ) x^{2}}{4 \left (x -1\right )^{2}}\right )\right )\right )}{2}-\frac {x}{2}\right \}\]