\[ y'(x)=\frac {y(x) (y(x)+1)}{x \left (x y(x)^4-y(x)-1\right )} \] ✓ Mathematica : cpu = 0.318293 (sec), leaf count = 39
\[\text {Solve}\left [-\frac {1}{2} (y(x)+1)^2+2 (y(x)+1)-\frac {1}{x y(x)}-\log (y(x)+1)=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.263 (sec), leaf count = 51
\[\{y \left (x \right ) = {\mathrm e}^{\RootOf \left (2 c_{1} x \,{\mathrm e}^{\textit {\_Z}}+2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}-2 c_{1} x -2 \textit {\_Z} x +7 x \,{\mathrm e}^{\textit {\_Z}}-5 x \,{\mathrm e}^{2 \textit {\_Z}}+x \,{\mathrm e}^{3 \textit {\_Z}}-3 x +2\right )}-1\}\]