\[ y'(x)=\frac {y(x) \coth \left (\frac {1}{x}\right ) \left (x^2 y(x) \log \left (\frac {x^2+1}{x}\right )-x \log \left (\frac {x^2+1}{x}\right )-\tanh \left (\frac {1}{x}\right )\right )}{x} \] ✓ Mathematica : cpu = 4.7425 (sec), leaf count = 115
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {-\coth \left (\frac {1}{K[1]}\right ) K[1] \log \left (\frac {K[1]^2+1}{K[1]}\right )-1}{K[1]}dK[1]\right )}{-\int _1^x\exp \left (\int _1^{K[2]}\frac {-\coth \left (\frac {1}{K[1]}\right ) K[1] \log \left (\frac {K[1]^2+1}{K[1]}\right )-1}{K[1]}dK[1]\right ) \coth \left (\frac {1}{K[2]}\right ) K[2] \log \left (\frac {K[2]^2+1}{K[2]}\right )dK[2]+c_1}\right \}\right \}\] ✓ Maple : cpu = 2.313 (sec), leaf count = 96
\[\left \{y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {-x \ln \left (\frac {x^{2}+1}{x}\right )-\tanh \left (\frac {1}{x}\right )}{x \tanh \left (\frac {1}{x}\right )}d x}}{c_{1}+\int -\frac {x \,{\mathrm e}^{\int \frac {-x \ln \left (\frac {x^{2}+1}{x}\right )-\tanh \left (\frac {1}{x}\right )}{x \tanh \left (\frac {1}{x}\right )}d x} \ln \left (\frac {x^{2}+1}{x}\right )}{\tanh \left (\frac {1}{x}\right )}d x}\right \}\]